A Complete Axiomatization for Prefix Iteration in Branching Bisimulation

نویسنده

  • Wan Fokkink
چکیده

This paper studies the interaction of prefix iteration with the silent step in the setting of branching bisimulation. We present a finite equational axiomatization for Basic Process Algebra with deadlock, empty process and the silent step, extended with prefix iteration, and prove that this axiomatization is complete with respect to rooted branching bisimulation equivalence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Complete Axiomatization for Pre x Iteration in Branching Bisimulation

This paper studies the interaction of pre x iteration x with the silent step in the setting of branching bisimulation That is we present a nite equational axiomatization for Basic Process Algebra with deadlock empty process and the silent step extended with pre x iteration and prove that this axiomatization is complete with respect to rooted branching bisimulation equivalence

متن کامل

A Complete Equational Axiomatization for Prefix Iteration

Prefix iteration a∗x is added to Minimal Process Algebra (MPAδ), which is a subalgebra of BPAδ equivalent to Milner’s basic CCS. We present a finite equational axiomatization for MPA∗ δ , and prove that this axiomatization is complete with respect to strong bisimulation equivalence. To obtain this result, we set up a term rewriting system, based on the axioms, and show that bisimilar terms have...

متن کامل

ACompleteEquationalAxiomatization for Prefix Iteration with Silent Steps

Fokkink ((1994) Inf. Process. Lett. 52: 333–337) has recently proposed a complete equational axiomatization of strong bisimulation equivalence for MPAδ(Aτ ), i.e., the language obtained by extending Milner’s basic CCS with prefix iteration. Prefix iteration is a variation on the original binary version of the Kleene star operation p∗q obtained by restricting the first argument to be an atomic a...

متن کامل

Complete Axiomatization for Divergent-Sensitive Bisimulations in Basic Process Algebra with Prefix Iteration

We study the divergent-sensitive spectrum of weak bisimulation equivalences in the setting of process algebra. To represent the infinite behavior, we consider the prefix iteration extension of a fragment of Milner’s CCS. The prefix iteration operator is a variant on the binary version of the Kleene star operator obtained by restricting the first argument to be an atomic action and allows us to ...

متن کامل

An Axiomatization for Regular Processes in Times Branching Bisimulation

Klusener introduced a timed variant of branching bisimulation. In this paper it is shown that Klusener's axioms for nite process terms, together with two standard axioms for recursion, make a complete axiomatization for regular processes modulo timed branching bisimulation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fundam. Inform.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 1996